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Introduction 

• Primary Support 

– 4-20mA Loop Drivers (XTRXXX) 

– Gamma Buffers (BUFXXXXX) 

• Other Support 

– Temperature Sensors (TMP) 

– IR Temperature Sensors (TMP006) 

– OPA Stability 

– Instrument Amplifiers 

• Applications (Other) 

– Industrial – Programmable Logic Controllers (PLC) 

– RTD 

– Reference Designs 
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What is an RTD? 

• Resistive Temperature Detector 

• Sensor with a predictable resistance vs. temperature 

• Measure the resistance and calculate temperature based on the 

Resistance vs. Temperature characteristics of the RTD material 
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How does an RTD work? 

• The product n*u decreases over temperature, therefore resistance 

increases over temperature (PTC) 

Resistance R
 L

A

Resistivity p
1

e n 

• Linear Model of Conductor Resistivity Change vs. Temperature 

• L = Wire Length 

• A = Wire Area 

• e = Electron Charge 

(1.6e-19 Coulombs) 

• n = Electron Density 

• u = Electron Mobility 

 t( ) 0 1  t t0  



What is an RTD made of? 

• Platinum (pt) 

• Nickel (Ni) 

• Copper (Cu) 

 

 

 

Metal 

Resistivity 

(Ohm/CMF) 

Gold (Au) 13 

Silver (Ag) 8.8 

Copper (Cu) 9.26 

Platinum (Pt) 59 

Tungsten (W) 30 

Nickel (Ni) 36 

•Have relatively linear change in resistance over temp 

•Have high resistivity allowing for smaller dimensions 

•Either Thin-Film or Wire-Wound 

*Images from RDF Corp 



How Accurate is an RTD? 
• Absolute accuracy is “Class” dependant - defined by DIN-IEC 60751.  Allows for easy 

interchangeability of field sensors 

 

 

 

 

 

 

 

 

 

• Repeatability usually very good, allows for individual sensor calibration 

• Long-Term Drift usually <0.1C/year, can get as low as 0.0025C/year 

*AAA (1/10DIN) is not included in the DIN-IEC-60751 spec but is an industry accepted tolerance class for high-performance 

measurements 

**Manufacturers may choose to guarantee operation over a wider temperature range than the DIN-IEC60751 provides 

Tolerance Class 

(DIN-IEC 60751) 

**Temperature Range of 

Validity 

Tolerance Values (C) 

Resistance at 

0C (Ohms) 

Error 

at 

100C 

(C) 

Error over 

Wire-

Wound 

Range (C) 

Wire-

Wound Thin-Film 

*AAA (1/10 DIN) 0 - +100 0 - +100 +/-(0.03 + 0.0005*t) 100 +/- 0.012 0.08 0.08 

AA (1/3DIN) -50 - +250 0 - +150 +/-(0.1 + 0.0017*t) 100 +/- 0.04 0.27 0.525 

A  -100 - +450 -30 - +300 +/-(0.15 + 0.002*t) 100 +/- 0.06 0.35 1.05 

B  -196 - +600 -50 - +500 +/-(0.3 + 0.005*t) 100 +/- 0.12 0.8 3.3 

C -196 - +600 -50 - +600 +/-(0.6 + 0.01*t) 100 +/- 0.24 1.6 6.6 



Why use an RTD? 

Table Comparing Advantages and Disadvantages of Temp Sensors 



How to Measure an RTD Resistance? 

• Use a……. 

Wheatstone Bridge or Current Source 
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Note on Non-Linear Output of Bridge 
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Simple Current Source / Sink Circuits 
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RTD Types and Their Parasitic Lead Resistances 
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2-Wire Measurements 
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3-Wire Measurements 
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4-Wire Measurements 
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Self-Heating Errors of RTD 

• Typically 2.5mW/C – 60mW/C 

• Set excitation level so self-heating error is <10% of the total error 

budget 
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RTD Resistance vs Temperature 
Callendar-Van Dusen Equations   

IEC 60751 PT-100 RTD (α = 0.00385) 

Equation Constants for 

R0 100

A 3.908310
3



B 5.775 10
7



C 4.183 10
12



For (T > 0) : RTD T( ) R0 1 A T B T
2  

For (T < 0) : RTD T( ) R0 1 A T B T
2  C T

3  T 100( ) 
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RTD Nonlinearity 
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Temperature Error > 45C 



RTD Nonlinearity 
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B and C terms are negative so 

2nd and 3rd order effects 

decrease the sensor output 

over the sensor span. 



Measurement Nonlinearity 
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Correcting for Non-Linearity 
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Correcting for Non-linearity 
Isource 0.0005
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Analog Linearization 
Circuits 



Analog Linearization Circuits 
Two-Wire Single Op-Amp 

This circuit is designed for a 0-5V output for a 0-200C temperature span.  Components R2, R3, 

R4, and R5 are adjusted to change the desired measurement temperature span and output. 

A voltage-controlled current 

source is formed from the op-amp 

output through R4 into the RTD 
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Amplifiers: 
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High Voltage: 
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Analog Linearization Circuits 
Two-Wire Single Op-Amp 
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Analog Linearization Circuits 
Two-Wire Single Op-Amp 
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This type of linearization typically provides a 20X -  40X 

improvement in linearity 
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Analog Linearization Circuits 
Three-Wire Single INA A voltage-controlled current 

source is formed from the INA 

output through Rlin into the RTD 
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This circuit is designed for a 0-5V output 

for a 0-200C temperature span.  

Components Rz, Rg, and Rlin are adjusted 

to change the desired measurement 

temperature span and output. 

Example 

Amplifiers: 

Low-Voltage: 

INA333 

INA114 

 

High Voltage 

INA826 

INA114 



Analog Linearization Circuits 
Three-Wire Single INA 
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This type of linearization typically provides a 20X -  40X 

improvement in linearity and some lead resistance cancellation 



Analog Linearization Circuits 
XTR105 4-20mA Current Loop Output 
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With Correction

Without Correction
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Analog Linearization Circuits 
XTR105 4-20mA Current Loop Output 



Analog + Digital Linearization Circuits 
XTR108 4-20mA Current Loop Output 



Digital Acquisition Circuits 
and Linearization Methods 



Digital Acquisition Circuits 
ADS1118 16-bit Delta-Sigma 2-Wire Measurement with Half-Bridge 
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Digital Acquisition Circuits 
ADS1220 24-bit Delta-Sigma Two 3-wire RTDs 
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Digital Acquisition Circuits 
ADS1220 24-bit Delta-Sigma One 4-Wire RTD 
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Digital Acquisition Circuits 
ADS1247 24-bit Delta-Sigma Three-Wire + Rcomp 



Digital Acquisition Circuits 
ADS1247 24-bit Delta-Sigma Four-Wire 



Digital Linearization Methods 
• Three main options 

– Linear-Fit 

– Piece-wise Linear Approximations 

– Direct Computations 
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Digital Linearization Methods 
Linear Fit 

Pro’s: 

•Easiest to implement 

•Very Fast Processing Time 

•Fairly accurate over small temp span 

Con’s: 

Least Accurate 
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Digital Linearization Methods 
Piece-wise Linear Fit 

Pro’s: 

•Easy to implement 

•Fast Processing Time 

•Programmable accuracy 

Con’s: 

•Code size required for coefficients 
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Digital Linearization Methods 
Direct Computation 

Pro’s: 

•Almost Exact Answer, Least Error 

•With 32-Bit Math Accuracy to +/-0.0001C 

Con’s: 

•Processor intensive 

•Requires Math Libraries 

•Negative Calculation Requires 

simplification or bi-sectional solving 
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Negative Temperature Simplified Approximation 
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Digital Linearization Methods 
Direct Computation 

-

-

RTDError 100 Res 60.256 Tlow 250 Thigh 50

TBisection RTDTemp 0

Tmid
Tlow Thigh( )

2


Rcal 100 1 A Tmid BTmid
2

 Tmid 100( ) C Tmid
3

  Tmid 0if

Rcal 100 1 A Tmid B Tmid
2

  Tmid 0if

Rcal 0 Rcal 0if

RTDError Res Rcal

Tlow Tmid RTDError 0if

Thigh Tmid RTDError 0if

RTDError 0.0001( )while

RTDTemp Tmid

RTDTempreturn

99.999

TBisection 99.999

Bi-Section Method for Negative Temperatures 



Questions/Comments? 

Thank you!! 
Special Thanks to: 

Art Kay 

Bruce Trump 

PA Apps Team 

Mike Beckman 

Omega Sensors 

RDF Corp 
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